
Solution to PurpleMind’s Brainstorm Episode 2

dino

In PurpleMind’s second episode of their Brainstorm math puzzle YouTube series, we are
challenged to find a way to relabel the sides of two 8-sided dice with positive integers
so that the probability distribution of their sum remains the same when they are rolled.
Here I present a solution that can be used to find pairs of dice that replicate the prob-
ability distribution of the sum of common n-sided dice. This method basically relies on
the relationship between the addition of discrete random variables and the product of
polynomials; and on the use of cyclotomic polynomials.

1 The probability distribution of the sum of two n-
sided dice

The probability distribution of the roll of a common n-sided die (labeled from 1 to n)
is the discrete uniform distribution U(1, n). That is, the probability of rolling a specific
number on the die is 1

n
.

Rolling two of these dice (and assuming that these two rolls are independent of each
other), we can study the probability distribution of the sum of the rolls. In the following
table we see the possible sums from the rolls of two 6-sided dice:

1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

Since the distributions of each individual roll are uniform, so is that of a specific roll of
both dice. That is, the probability of each specific roll (each cell on this table) is the
same and, since there are n2 cells, it is 1

n2 . For example, the probability of specifically
rolling a 5 on the first die and a 3 on the second die is 1

36
. Notice that it is important to

differentiate which die is which.
Because of this, we just need to count cells to find the probability distribution of the sum
of the roll and then divide by n2 to turn the result into probabilities. Denoting this sum
by S, this is the result for the 6-sided dice example:
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We could simplify these fractions. In fact, the probability of the sum of two n-sided dice
being n + 1 is always 1

n
. However, by writing it like this we can easily see the arising

pattern in the distribution.

Figure 1: PMF of the sum of two 6-sided dice. Made with Desmos.

This distribution is some form of “discrete triangular distribution”. The name triangular
distribution is already used for a different continuous distribution, so this name might be
confusing. Let’s denote this distribution by T (n).
Now, in my attempt to find a solution to this problem, I first looked at a few solutions I
could find. Here are the tables of some relabelings of 4-sided, 6-sided (the one given in
the video) and 8-sided dice:

1 2 2 3
1 2 3 3 4
3 4 5 5 6
3 4 5 5 6
5 6 7 7 8

1 2 2 3 3 4
1 2 3 3 4 4 5
3 4 5 5 6 6 7
4 5 6 6 7 7 8
5 6 7 7 8 8 9
6 7 8 8 9 9 10
8 9 10 10 11 11 12

1 2 2 3 3 4 4 5
1 2 3 3 4 4 5 5 6
3 4 5 5 6 6 7 7 8
5 6 7 7 8 8 9 9 10
5 6 7 7 8 8 9 9 10
7 8 9 9 10 10 11 11 12
7 8 9 9 10 10 11 11 12
9 10 11 11 12 12 13 13 14
11 12 13 13 14 14 15 15 16

I found these solutions with just a bit more than brute force and then I stared at them
for some hours trying to find some pattern or property that I could exploit. For example,
these solutions look like the numbers follow slanted diagonals. Could we find more solu-
tions by slanting the diagonals even more? Maybe that only works for bigger values of n?
Do all possible solutions follow this pattern? I mainly looked at the apparent symmetries
in these solutions, where we could find each cell’s “complement” by rotating the table
180º:

2



1 2 2 3
1 2 3 3 4
3 4 5 5 6
3 4 5 5 6
5 6 7 7 8

1 2 2 3 3 4
1 2 3 3 4 4 5
3 4 5 5 6 6 7
4 5 6 6 7 7 8
5 6 7 7 8 8 9
6 7 8 8 9 9 10
8 9 10 10 11 11 12

1 2 2 3 3 4 4 5
1 2 3 3 4 4 5 5 6
3 4 5 5 6 6 7 7 8
5 6 7 7 8 8 9 9 10
5 6 7 7 8 8 9 9 10
7 8 9 9 10 10 11 11 12
7 8 9 9 10 10 11 11 12
9 10 11 11 12 12 13 13 14
11 12 13 13 14 14 15 15 16

One of the main things I wondered about was the symmetry in the dice, where the
faces (the rows and columns in the tables) are themselves “symmetrical”. The dice being
“symmetrical” make the distribution of their sum also “symmetrical”, which is necessary
for the distribution to be T (n). However, I wonder if there are solutions with dice faces
that are not symmetrical in this sense, but such that the resulting sum distribution is
still T (n). I couldn’t prove any of this with this geometrical approach. I might have
missed an elegant way to solve the problem with just this, but I think I have reached a
more interesting (or unnecessarily complicated) way.
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2 Convolutions and the moment-generating function
A more general way to find the probability distribution of a sum S of two independent
random variables X and Y is using convolutions. In the discrete case where X takes
values x1, x2, . . . , we have

P (S = s) =
∞∑
k=1

P (X = xk)P (Y = s− xk)

I remembered how, in the continuous case, the convolution product (the continuous version
of this equation) behaves “nicely” along with the bilateral Laplace transform:

(f ∗ g)(x) :=
∫ ∞

−∞
f(t)g(x− t)dt, B {f} (s) :=

∫ ∞

−∞
e−stf(t)dt

B {f ∗ g} (s) = B {f} (s) B {g} (s)

I thought this could be useful, that I could easily work with the distribution of the sum of
two variables as a normal product. I then realized that this is simply what the moment-
generating function is for. In fact, the moment-generating function of a random variable
is (except for a negative sign) the analogue of the bilateral Laplace transform. If X is
a random variable, then its moment-generating function is MX(t) := E

[
etX
]
. In the

discrete case, this is

MX(t) = E
[
etX
]
=

∞∑
k=1

exktP (X = xk)

and it has that, if X and Y are independent,

MX+Y (t) = MX(t)MY (t)

In the case of the discrete uniform distribution, if X ∼ U(1, n), then its moment-
generating function is

MX(t) =
n∑

k=1

ekt
1

n
=

1

n

n∑
k=1

ekt

Then, if Y ∼ U(1, n) too and S = X + Y , then

MS(t) = MX(t)MY (t) =
1

n2

(
n∑

k=1

ekt

)2

=

=
1

n2

[
e2t + 2e3t + · · ·+ (n− 1)ent + ne(n+1)t + (n− 1)e(n+2)t + · · ·+ 2e(2n−1)t + e2nt

]
which could be calculated directly from the definition of MS(t) and the PMF of S ∼ T (n).
Now, assume that we had a relabeling of the dice such that the first die has xk faces
labeled with k and the second die has yk faces labeled with k. Let’s say that the dice
have nX and nY faces respectively. That is,

nX =
∞∑
k=1

xk, nY =
∞∑
k=1

yk
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Then, the moment-generating function of rolls X and Y would be

MX(t) =
1

nX

∞∑
k=1

xke
kt, MY (t) =

1

nY

∞∑
k=1

yke
kt

In order for their sum S = X+Y to follow the T (n) distribution, the product of these two
functions must be the moment-generating function from before. Therefore, the problem
of finding these dice is the same as factoring that moment-generating function into two
other valid moment-generating functions.

5



3 Using polynomials
Turns out that these moment-generating functions behave pretty much like polynomials
do. If we substitute et with x in the moment-generating function of T (n) and ignore the
1
n2 coefficient, we obtain(

n∑
k=1

xk

)2

= x2 + 2x3 + · · ·+ (n− 1)xn + nxn+1 + (n− 1)xn+2 + · · ·+ 2x2n−1 + x2n

We can also divide by x2 to simplify things. This turns out to be the same as considering
the dice to allow faces labeled with 0 (non-positive integers) and considering that a
common die has faces going from 0 to n− 1. We obtain the polynomial

T 2
n(x) :=

(
n−1∑
k=0

xk

)2

= 1+2x+ · · ·+(n−1)xn−2+nxn−1+(n−1)xn+ · · ·+2x2n−3+x2n−2

We are associating this polynomial to a discrete random variable X where each term
xk corresponds to the occurrence of X = k + 1 with probability proportional to that
term’s coefficient. For example, we associate the polynomial Tn(x) =

∑n−1
k=0 x

k with the
distribution U(1, n) and a common n-sided die.
This means that in order to find a new couple of dice that simulates T (n), we can factorize
T 2
n(x) into two polynomials and find their associated distributions. That is, as long as

the two polynomials have non-negative integer coefficients. Otherwise, they wouldn’t
correspond to actual probability distributions or to any die.
On top of this, the resulting die from factorizing T 2

n(x) aren’t necessarily n-sided. The
number of faces in each die corresponds to the sum of the coefficients in each factor. For
example, in the n = 4 case, we could consider the trivial factorization:

T 2
4 (x) = (1 + x+ x2 + x3)2 = (1 + x+ x2 + x3)(1 + x+ x2 + x3) = PX(x)PY (x)

We have factorized T 2
4 (x) into the polynomials PX(x) = PY (x) = 1 + x + x2 + x3. This

means that both dice X and Y have each

• 1 face labeled with a 1. (corresponding to the term 1)

• 1 face labeled with a 2. (corresponding to the term x)

• 1 face labeled with a 3. (corresponding to the term x2)

• 1 face labeled with a 4. (corresponding to the term x3)

This yields the usual pair of 4-sided dice.
Let’s see another way to factorize T 2

4 (x):

T 2
4 (x) = (1 + x+ x2 + x3)2 = (1 + 2x+ x2)(1 + 2x2 + x4) = PX(x)PY (x)

The polynomial PX(x) = 1 + 2x+ x2 corresponds to the die X with

• 1 face labeled with a 1. (corresponding to the term 1)

• 2 faces labeled with a 2. (corresponding to the term 2x)
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• 1 face labeled with a 3. (corresponding to the term x2)

while the polynomial PY (x) = 1 + 2x2 + x4 corresponds to the die Y with

• 1 face labeled with a 1. (corresponding to the term 1)

• 2 faces labeled with a 3. (corresponding to the term 2x2)

• 1 face labeled with a 5. (corresponding to the term x4)

These are the dice in the previous table for the n = 4 case. For the other two tables with
non-trivial solutions, we had the following factorizations:

T 2
6 (x) = (1 + x+ x2 + x3 + x4 + x5)2 = (1 + 2x+ 2x2 + x3)(1 + x2 + x3 + x4 + x5 + x7)

T 2
8 (x) = (1+x+x2+x3+x4+x5+x6+x7)2 = (1+2x+2x2+2x3+x4)(1+x2+2x4+2x6+x8+x10)

As we said, the number of faces of each die is the sum of the coefficients in its polynomial,
so it may not be n-sided. A clear case of this is the also trivial factorization given by

T 2
n(x) = 1 · T 2

n(X)

where PX(x) = 1 means that the X die is a 1-sided die labelled with a 1, with only one
outcome; while the Y die is a n2-sided die. For the n = 4 case, we have

T 2
4 (x) = 1 · (1 + 2x+ 3x2 + 4x3 + 3x4 + 2x5 + x6)

which returns the table

1 2 2 3 3 3 4 4 4 4 5 5 5 6 6 7

1 2 3 3 4 4 4 5 5 5 5 6 6 6 7 7 8

A less trivial example could be

T 2
4 (x) = (1 + x)(1 + x+ 2x2 + 2x3 + x4 + x5)

which gives
1 2 3 3 4 4 5 6

1 2 3 4 4 5 5 6 7

2 3 4 5 5 6 6 7 8

This all feels like an over-complicated mess, but it does give some interesting insight.
Attempting to find relabelings of the dice by hand, I couldn’t find any for the cases
n = 3, 5 or 7. I suspected that maybe odd values of n didn’t have non-trivial relabelings,
or that at least we would have to look at bigger values of n to find some. Maybe this is
why PurpleMind asks us to find relabelings for n = 8 after showing the n = 6 case and
skipping n = 7. The actual reason may not be because 7-sided dice are not easy to come
by, but is actually somewhat interesting.
The polynomial Tn(x) =

∑n
k=1 x

k turns out to be irreducible for prime values of n. You
can find a proof of this using Eisenstein’s criterion in the Wikipedia. This means that,
much like the square of a prime number, the polynomial T 2

n(x) cannot be factorized in
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any other way than Tn(x) · Tn(x) and 1 · T 2
n(x). Otherwise we would find a divisor of

Tn(x) and it wouldn’t be irreducible. This means that there are no non-trivial relabelings
for the cases where n is prime.
Furthermore, this method could be used to generate any amount of dice such that, when
they are all rolled, their sum simulates the T (n) distribution. To do this, we could
factorize T 2

n(x) into three or more factors. Similarly, it is possible that factorizing Tm
n (x)

for higher values of m generalizes this problem to the replication of the roll of m n-sided
dice.
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4 More on cyclotomic polynomials
Up until now I believed that a cyclotomic polynomial was a polynomial of the form of
Tn(x) = 1+x+x2+ · · ·+xn−1. I hadn’t realized this mistake before since I haven’t used
cyclotomic polynomials properly until now. Even though the cyclotomic polynomials are
not exactly Tn(x) as we will see in a moment, these polynomials are still very useful to
us. We have that

xn − 1 = (x− 1)(1 + x+ x2 + · · ·+ xn−1)

The polynomial xn− 1 has the n-th roots of unity as its n roots. These roots of unity are
the complex numbers whose n-th power is 1. For example, −1 is a second root of unity
since (−1)2 = 1 and in fact, it is an n-th root of unity for any even n. Aside from 1 and
−1, i and −i are the other two fourth roots of unity, since i4 = (−1)4 = 1. An easy way
to visualize the n-th root of unities is to draw the complex unit circle and inscribe an
n-sided polygon in it such that it has a vertex at 1. Then, the n-th roots of unity are the
vertices of this polygon. Since (xn − 1) = (x− 1)Tn(x), we know that the n− 1 roots of
Tn(x) are the n-th roots of unity excluding 1.
The n-th cyclotomic polynomial φn(x) is similar to Tn(x) in that its roots are also n-th
roots of unity, but they are not necessarily all the n-th roots. Its roots are the primitive
n-th roots of unity, which are the ones such that they are not roots of another polynomial
xm − 1 with m < n. We can write the n-th roots of unity as

e
2πik
n = cos

(
2πk

n

)
+ i sin

(
2πk

n

)
, k = 0, . . . , n− 1

Then, we could show that the root corresponding to k is primitive if and only if k and
n are coprime. This means that, if n is prime, φn(x) and Tn(x) do coincide. Another
important property (or equivalent definition) of φn(x) is that it is the unique irreducible
polynomial with integer coefficients that divides xn − 1. In fact, we have that

xn − 1 =
∏
d|n

φd(x)

This is very important, since it gives some kind of unique “prime factorization” for xn−1
and therefore for Tn(x):

Tn(x) =
∏
d|n
d6=1

φd(x)

Now, this lets us more easily control the number of faces in each die. Since this number
is the sum of the coefficients in the factor polynomials, it is PX(1) and PY (1). That is,
the polynomials evaluated at x = 1. We can easily see that

T 2
n(1) = PX(1)PY (1) =

∏
d|n
d6=1

φd(1)

These cyclotomic polynomials have one last interesting property that lets us control this
number of faces. They have that

φn(1) =

{
p if n is a power of some p prime
1 if not
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This lets us easily find factorizations of T 2
n(x) such that the resulting dice are n-sided.

For example, for n = 4, we have

T 2
4 (x) = φ2

2(x)φ
2
4(x), T 2

4 (1) = 22 · 22 = 16

Because 4 is 22, all the cyclotomic polynomials involved evaluate to 2 at x = 1 so in
order to find a factorization for 4-sided dice, we have to pick two of these polynomials
for PX(x). The options are PX(x) = φ2(x)φ4(x) = T4(x), which is the trivial one; or
PX(x) = φ2

2(x) = 1 + 2x+ x2 which is the one found before. Notice that PX(x) = φ2
4(x)

is just the same case as PX(x) = φ2
2(x), since it would just correspond to the other die

and the cases are symmetrical.
Let’s see now how this works for n = 6. This is the first case where we have a composite
divisor that is not a power of a prime. We have that

T 2
6 (x) = φ2

2(x)φ
2
3(x)φ

2
6(x), T 2

6 (1) = 22 · 32 · 12 = 36

We notice that, in order to have PX(1) = 6, the factorization of PX(x) must include
φ2(x)φ3(x) and no more copies of φ2(x) and φ3(x). The only leeway we get in this case is
whether PX(x) includes (has a divisor) φ6(x) or not. (The case where φ2

6(x) is included
is symmetrical to the case where PX(x) = φ2(x)φ3(x).)
Therefore, we have only two cases: The trivial PX(x) = φ2(x)φ3(x)φ6(x) = T6(x) and the
non-trivial PX(x) = φ2(x)φ3(x) = 1 + 2x+ 2x2 + 1 found previously.
And one more time for n = 8: We have

T 2
8 (x) = φ2

2(x)φ
2
4(x)φ

2
8(x), T 2

8 (1) = 22 · 22 · 22 = 64

This time, we have much more freedom to choose the polynomials, since the only requisite
seems to be that PX(x) is the product three of these cyclotomic polynomials. I believe
the only four possible cases we have are:

• PX(x) = φ2(x)φ4(x)φ8(x), the trivial case.

• PX(x) = φ2
2(x)φ4(x), the non-trivial case found previously.

• PX(x) = φ2
2(x)φ8(x), which has

PX(x) = 1 + 2x+ x2 + x3 + 2x4 + x6

PY (x) = 1 + 2x2 + 2x4 + 2x6 + x8

1 2 2 3 5 6 6 7

1 2 3 3 4 6 7 7 8

3 4 5 5 6 8 9 9 10

3 4 5 5 6 8 9 9 10

5 6 7 7 8 10 11 11 12

5 6 7 7 8 10 11 11 12

7 8 9 9 10 12 13 13 14

7 8 9 9 10 12 13 13 14

9 10 11 11 12 14 15 15 16
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• PX(x) = φ2(x)φ
2
4(x), which has

PX(x) = 1 + x+ 2x2 + 2x3 + x4 + x5

PY (x) = 1 + x+ 2x4 + 2x5 + x8 + x9

1 2 3 3 4 4 5 6

1 2 3 4 4 5 5 6 7

2 3 4 5 5 6 6 7 8

5 6 7 8 8 9 9 10 11

5 6 7 8 8 9 9 10 11

6 7 8 9 9 10 10 11 12

6 7 8 9 9 10 10 11 12

9 10 11 12 12 13 13 14 15

10 11 12 13 13 14 14 15 16

Now, by using the cyclotomic polynomials, we ensure that the coefficients of PX(x) and
PY (x) are integers. However, some cyclotomic polynomials have negative integer coeffi-
cients, which makes some products of cyclotomic polynomials also have negative coeffi-
cients and, therefore, not valid solutions. We haven’t found any case like this so far and
I suspect that, somehow, imposing PX(1) = n forces all coefficients to be non-negative.
Assuming that this is true, we reach another interesting piece of insight about this prob-
lem. Once we fix n, the “structure” of the solutions only depends on the “factorization
structure” of n. That is, for example, whether n is the product of three primes or the
square of a prime or something else. The fact that all problems with n prime have no non-
trivial solutions is a consequence of this. This structure is known as the prime signature
of n.
We have found solutions for n = 4, 6 and 8. 4 is a square of a prime; 6 is the product of
two primes; and 8 is the cube of a prime. Therefore, we already know which solutions
to look for whenever we look at higher numbers n with this signature. For example, for
n = 9 = 32, we will have only two answers: the trivial one and the non-trivial one, which
will be

PX(x) = φ2
3(x) = 1 + 2x+ 3x2 + 2x3 + x4

PY (x) = φ2
9(x) = 1 + 2x3 + 2x6 + 2x9 + x12
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1 2 2 3 3 3 4 4 5

1 2 3 3 4 4 4 5 5 6

4 5 6 6 7 7 7 8 8 9

4 5 6 6 7 7 7 8 8 9

7 8 9 9 10 10 10 11 11 12

7 8 9 9 10 10 10 11 11 12

7 8 9 9 10 10 10 11 11 12

10 11 12 12 13 13 13 14 14 15

10 11 12 12 13 13 13 14 14 15

13 14 15 15 16 16 16 17 17 18

5 Conclusion
We have seen a method of generating pairs of dice with relabeled faces that replicate the
roll of two common n-sided dice. We have done so through the study of polynomials,
specifically of the polynomials T 2

n(x). Through the use of cyclotomic polynomials, we
have shown that this problem is reduced to choosing the appropriate polynomials out of
the factorization of T 2

n(x).
This has shown that the form of the solutions and the number of the solutions depends
only on the prime signature of n. By finding the solutions of n = 4, 6 and 8, we know
how to find the solutions for any n that is a square or cube of a prime or a product of two
primes. Though this is all under the assumption that the resulting polynomials PX(x)
and PY (x) have positive coefficients, which we have not shown.
It is interesting to note that all the example solutions we have found are symmetrical,
just like we noted at the start. It would also be interesting to prove if this is true for all
possible solutions and for all values of n.

6 Addendum
Looking more into this problem, we find that it has already been studied properly by
people who actually know what they’re doing, though they all seem to work with cyclo-
tomic in the same way I have. The non-trivial solution for the n = 6 case, the dice that
Purplemind shows in their video, is known as the Sicherman dice. Here are a few links
about this problem:

• Wikipedia article for Sicherman dice: https://en.wikipedia.org/wiki/Sicherman_
dice

• OEIS sequence A111588 with the number of solutions for the n case: https://
oeis.org/A111588

• Free-access article by Gallian and Rusin that’s basically this but better: https:
//doi.org/10.1016/0012-365X(79)90161-4
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