
Closing Differentiable Piecewise Circular Curves
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Abstract
We study differentiable piecewise circular curves in the plane (which we will call circle
curves) and determine the conditions which allow these curves to be closed with one last
circular arc while keeping the differentiability of the curve.
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1 Introduction
The name differentiable piecewise circular curve is a complicated mouthful for a very
simple concept. Constructing these curves is an exercise in high-school technical drawing
classes about tangency. I remember doing these fun exercises where we’d find the circles
that make up a curve to complete a picture in a sort of over-complicated connect-the-dots
game.

You would have this set of points in the plane in a sequence and you would have to find
the center of the circular arc that joins a point with the next in such a way that this arc
continues the previous one smoothly, without making a corner. You would go on until
all the points are connected by a “smooth” curve made of arcs.

Figure 1: Five points “smoothly joined” by four circular arcs

However, maybe you would be tempted to close this curve, finding one more arc that
joins the last point with the first one, only to find that this extra arc doesn’t “smoothly”
join with the first one.

Figure 2: A curve that doesn’t close “nicely” Figure 3: A curve that closes “nicely”

But you think that this could be possible. Maybe not for these points, but there definitely
are sets of points for which it is possible. The obvious one is any number of points on
a circle, the circle itself being the curve that joins them. So there are sets that can be
“smoothly closed” and others that can’t? What difference is there between these sets?
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2 Basic concepts
To start, let’s define what these curves are, though these are intuitively very simple con-
cepts.

Definition 1: Let t1, . . . , tn ∈ [0, 1] be such that t1 = 0 < t2 < · · · < tn = 1 (t1, . . . , tn
are a partition of [0, 1]). We say that the plane curve γ : [0, 1] → R2 is a piecewise circular
curve passing through the n points pi := γ(ti) ∈ R2 if the restrictions γ|[ti,ti+1]

are circular
arcs.

Because circular arcs are differentiable, we just need to check differentiability at the points
ti to determine if γ is differentiable. In the introduction, we used the word “smooth” in
quotations to refer to differentiability in these points, though smooth often refers to
infinitely-differentiable curves. However, for a piecewise circular curve to be C∞ (actually
just C2), all the circular arcs would need to be arcs of the same circle, so only circles are
smooth piecewise circular curves.

Let γi := γ|[ti,ti+1]
, i = 1, . . . , n − 1 be the circular arcs, which are differentiable. As we

said, for γ to be differentiable we just need

lim
t→t−i+1

γ′(t) = γ′
i(ti+1) = γ′

i+1(ti+1) = lim
t→t+i+1

γ′(t) (1)

This is just fancy talk to say that each circular arc is tangent to the next one (and the
previous one). Figure 1 is an example of a differentiable piecewise simple curve.

Proposition 1: Once we’ve fixed the points p1, . . . , pn, the differentiable piecewise cir-
cular curve passing through them is uniquely characterized (save reparametrization) by
the direction1 of the vector γ′(ti) for any i = 1, . . . , n.

Proof: Consider γi (unless if i = n, in which case consider this proof for the opposite
curve ∼ γ that passes through the point in the reverse order). Since this is a circular
arc, it is uniquely determined by γi(ti) = pi, γi(ti+1) = pi+1 and the tangent direction
γ′
i(ti) = γ′(ti). This circular arc determines a tangent direction at the next (and previous)

arc, so all arcs are uniquely determined.

In particular, γ is uniquely determined by the direction of γ′(0), so we will write γ :=
C(t; p1, . . . , pn) for the differentiable piecewise circular curve that passes through p1, . . . , pn
and has γ′(0) in the same direction as t. Differentiable piecewise circular curve is a very
long name, so we will call these curves circle curves.

We could have proved Proposition 1 by construction. This would be the same process
as those technical drawing exercises. We would find the centers of the circular arcs
considering that γi passes through pi and pi+1. Then the center of γi sits at the bisection
of the segment pipi+1. The center would also sit at the line passing through pi and
perpendicular to γ′

i(ti). Then the center sits at the intersection of these two lines and γi
is uniquely determined. We would continue to find the rest of the centers using the same
method, which requires only ruler and compass.

1We won’t consider opposite vectors to have the same direction. We’ll say the vectors a and b have

3



Figure 4: Circle curve showing the complete circles of each circular arc, including the
bisecting and perpendicular lines. The vector t is shown with a cross.

However, this construction spells a little problem with our definition: the case where
γ′
i(ti) has the same or opposite direction as pi+1−pi. In the construction, this means that

the two lines are parallel and there is no intersection for this circle’s center to be placed
at. The solution to this is to consider straight lines to be circular arcs. These circular
arcs would have “infinite radius” and their center would be “at infinity”.

Figure 5: Circle curve with a straight segment. Notice how the bisecting and
perpendicular lines are parallel, resulting in a straight line instead of a proper circular

arc.

the same direction if a = kb for some scalar k ≥ 0.
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3 Closing the circle curve
We now want to consider closed circle curves: Circle curves that have γ(0) = γ(1), or
equivalently, p1 = pn. As we mentioned in the introduction, we are interested in the cases
where this curve closes “nicely”, which is when γ′(0) and γ′(1) have the same direction:

Definition 2: The closed circle curve C(t; p1, . . . , pn) := C(t; p1, . . . , pn, p1) closes nicely
if γ′(0) has the same direction as γ′(1).

Playing around with different points p1, . . . , pn and different vectors t, we can notice an
interesting distinction:

• If n is odd, we seem to always be capable of finding a direction t for which γ closes
nicely. Furthermore, there are only two of these directions: t and −t. (Figure 6)

• If n is even, it seems like either the curve doesn’t close nicely for any t ∈ S1, or it
does close nicely for every t ∈ S1, which depends on the chosen points. (Figures 7
and 8)

Furthermore, it seems that for an even value of n, the angle that γ′(0) and γ′(1) make
is kept constant as t changes. For odd values of n, it seems like γ′(0) and γ′(1) are
reflections of each other across a specific direction. We are gonna try to prove that this
is true.

Definition 3: For a closed circle curve C(t; p0, . . . , pn−1) = C(t; p0, . . . , pn−1, p0) (notice
the change in the indices), we’re gonna write t0, . . . , tn ∈ S1 as:

ti :=
γ′
i(ti)

‖γ′
i(ti)‖

, i = 0, . . . , n (2)

With this notation, the curve closing nicely is equivalent to t0 = tn. The behaviour of
these unit vectors is key to our proof.

Proposition 2: The vectors t0, . . . , tn of a closed circle curve C(t; p0, . . . , pn−1) satisfy
that

ti+1 = Fiti, i = 0, . . . , n− 1 (3)
where Fi denotes the matrix for a reflection (a flip) across the direction pi+1 − pi.

Proof: We can focus solely on the arc γi, which has γ′
i(ti) in the direction ti and γ′

i(ti+1)
in the direction ti+1. Consider, without loss of generality, that this circular arc has radius
1; that the center of this circular arc is at the origin; and that the line pipi+1 is parallel
to the horizontal axis in such a way that we can write

pi = (− sin θ, cos θ), pi+1 = (sin θ, cos θ)

where θ ∈ (0, π). Through a strictly increasing reparametrization, the arc γi can be
thought of as equivalent to the curve

δi : [−θ, θ] −→ R2

ϕ 7−→ (sinϕ, cosϕ)
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(a) (b)

Figure 6: Closed curves of the same set of odd points. (b) closes nicely while (a) doesn’t.

(a) (b)

Figure 7: Closed curves of the same set of even points. Neither (a) or (b) close nicely.

(a) (b)

Figure 8: Closed curves of the same set of even points. Both (a) and (b) close nicely.
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Then, γ′
i(ti) is in the same direction as δ′i(−θ) = ti; and γ′

i(ti+1) is in the same direction
as δ′i(θ) = ti+1. We have that

δ′i(ϕ) = (cosϕ,− sinϕ)

pi pi+1

δi

θθ

ti

ti+1

ti

ti+1

Fiθ

θ

Figure 9: Diagrams showing the reflection from ti to ti+1.

Therefore,
ti = δ′i(−θ) = (cos θ, sin θ)

ti+1 = δ′i(θ) = (cos θ,− sin θ)

 =⇒ ti = Fiti+1

where Fi is the reflection across the horizontal axis. Undoing this change of coordinates
we’ve made, we obtain that ti+1 is the reflection of ti across the direction of the line
pipi+1.

Then, we can write
tn = Fn−1Fn−2 · · ·F1F0t0 (4)

tn is the result of reflecting t0 across the directions of all the sides of the polygon made
up by p1, . . . , pn. Note that this transformation is independent of the choice of t and only
depends on p1, . . . , pn.

In order to continue, we need some basic properties of reflections and orthogonal matrices.
A reflection is an orthogonal linear transformation. That is to say that its matrix A
satisfies that AAT = ATA = I (its columns are orthogonal to each other and have norm
1, and the same thing happens with its rows). From this we can deduce that detA = ±1.
We can also prove that the product of orthogonal matrices is an orthogonal matrix:

A1A2 · · ·An(A1A2 · · ·An)
T = A1A2 · · ·AnA

T
n · · ·AT

2A
T
1 = I (5)

In the plane, there are only two kinds of orthogonal transformations: Reflections and ro-
tations. This means that an orthogonal transformation in the plane is either a reflection
or a rotation (the identity transformation can be thought as a 0° rotation) and we can
tell which one a transformation is only through its determinant. An orthogonal transfor-
mation in the plane with detA = 1 is a rotation, while if detA = −1, the transformation
is a reflection.
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Therefore, the matrix T := Fn−1Fn−2 · · ·F0 from equation (5) is an orthogonal matrix
too, with determinant

detT = detFn−1 detFn−2 · · · detF0 =

n︷ ︸︸ ︷
(−1)(−1) · · · (−1) = (−1)n (6)

This is where the distinction between n even and n odd comes from. If n is even,
detT = 1, so T is a rotation. This confirms the behaviour we saw before, where the angle
between t0 and tn was always the same. Therefore, a circle curve with an even amount
of points will only close nicely if T = I, since that’s the only case where a rotation has 1
as an eigenvalue.

If n is odd, then detT = −1 and T is a reflection. Again, this is what we saw earlier.
Any reflection has 1 as an eigenvalue and its corresponding eigenvector is the direction
of the reflection, so if t is in this direction (or −t), then T t = t and the curve closes nicely.

This explains and proves the behaviour we described. Now we’ll try to find the condition
that makes the curve close nicely if n is even; and the vector t that closes the curve nicely
if n is odd.

From now on, we will study angles. These angles will be oriented. “A rotation with angle
−θ” will rotate vectors with an angle of the same amplitude as θ, but in the opposite
direction.

Proposition 3: FiFi−1 is a rotation and the angle of this rotation is twice the opposite
of the angle αi := ∠pi−1pipi+1. The direction of this rotation is the opposite of the turn
made by this corner.

Proof: As we’ve seen, we know that FiFi−1 is a rotation. Then, we just need to find the
image of one (non-zero) vector to know its angle. Consider v := pi − pi−1, which is in the
direction of the reflection Fi−1. This way, Fi−1v = v and

FiFi−1v = Fiv

As we see in Figure 10, Fiv is the same as rotating v −2αi (following pi−1pipi+1 in Fig-
ure 10, this corner is a clockwise turning, so the rotation is counter-clockwise). Because
FiFi−1 is a rotation and FiFi−1v = Fiv, we know FiFi−1 is a rotation of −2αi.

We’ll then write FiFi−1 =: Ri. We have then that:

tn =

{
Rn−1 · · ·R3R1t0 if n is even
Fn−1Rn−2 · · ·R3R1t0 if n is odd

(7)

Now, the product of rotations is a rotation too, and its angle if the sum of all the rotations’
angles. Therefore, in the even case, we can write the following condition for nice closure:

2α1 + 2α3 + · · ·+ 2αn−1 = 2kπ, k ∈ Z

Equivalently,
α1 + α3 + · · ·+ αn−1 = kπ, k ∈ Z (8)
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pi−1

pi

pi+1

v

Fiv

αi

αi

αi

Figure 10: Effect of Fi on v. This reflection on this vector is equivalent to a
counter-clockwise rotation of 2αi.

When this happens, the tower of rotations from Equation (7) is a rotation of −2kπ, so it
is the identity, tn = t0 and the curve closes nicely.

If n is odd, the tower of rotations is a rotation R of angle β := −2α1 − 2α3 − · · · − 2αn−2

and tn = Fn−1Rt0. Now, because det(Fn−1R) = −1, this is a reflection across some
direction. If we find a vector v with Fn−1Rv = v, this will be that direction.

Proposition 4: Fn−1R is a reflection across the direction of p0 − pn−1 rotated by −β
2
.

Proof: We already reasoned that this transformation is a reflection. No we just have to
see that the vector from the statement v is the direction of the reflection. This can be
easily seen in Figure 11.

v

Rv

Fn−1Rv

p0 − pn−1

β
2

β
2

Figure 11: Effect of Fn−1R on v.

Because Fn−1Rv = v, v is the direction of this reflection.

We have that
−β

2
= α1 + α3 + · · ·+ αn−2

So the direction t (or −t) that makes the curve close nicely for n odd is p0−pn−1 rotated
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by α1 + α3 + · · ·+ αn−2.

Results: The closed circle curve C(t; p0, . . . , pn−1) closes nicely if:

• n is even and the sum α1 + α3 + · · ·+ αn−1 is a multiple of π, in which case it will
close nicely for any t ∈ S1.

• n is odd and either t or −t are at an angle α1+α3+ · · ·+αn−2 with the line pn−1p0.

Examples: Consider Figure 12, which represents the curve C(t; p0, p1, p2, p3, p4).

Figure 12

The vector t in the figure is actually −t, but the result should be the same. If we check
α1 and α3, these angles add up to 141.3° + 99.47° = 240.77°. If we follow the points pi,
these angles are clockwise, and so the angle measured in a clockwise fashion between p4p0
and t should be 244.77°. In Figure 12, this angle is 119.23°, but counter-clockwise, which
is the same thing. So our result tells us that the curve closes nicely.

Now, consider Figure 13 for a curve with six points. This curve has α1 + α3 + α5 =
116.28°+84.18°+96.66° = 299.34°, which is not a multiple of π, so it doesn’t close nicely.
Not only does this particular curve not close nicely, but neither will any curve with these
same points.

Consider instead the curve in Figure 14. It has α1+α3+α5 = 96.1°+119.24°+144.66° =
360°, so it does close nicely and it will still close nicely for any t ∈ S1.
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Figure 13

Figure 14
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4 Appendix
Figures 12, 13 and 14 were made using Geogebra. Figures 1 to 8 were made using the
following Processing code:

1 PVector[] points;
2 PVector[] centers;
3 float[] radii;
4 boolean dirs[];
5 PVector start;
6

7 int N = 5;
8

9 boolean close = true;
10

11 int target = -2;
12

13 boolean showGuidelines = true;
14

15 void setup() {
16 size(1000, 1000);
17 ellipseMode(RADIUS);
18

19 if (close) N++;
20

21 points = new PVector[N];
22 centers = new PVector[N-1];
23 radii = new float[N-1];
24 dirs = new boolean[N-1];
25

26 for (int i = 0; i < N - (close?1:0); i++) points[i] = new PVector(width/2
+ (i-N/2)*100, height/2 + 0);

27 for (int i = 0; i < N-1; i++) {
28 centers[i] = new PVector();
29 radii[i] = 0;
30 dirs[i] = false;
31 }
32

33 if (close) points[N-1] = points[0];
34

35 start = points[0].copy().add(20,20);
36 }
37

38 void draw() {
39 background(255);
40

41 calcCenters();
42

43 noFill();
44 for (int i = 0; i < N; i++) {
45 PVector p = points[i];
46

47 if (i == target) stroke(255, 0, 0);
48 else stroke(0);
49

50 strokeWeight(3);
51 point(p.x, p.y);
52 strokeWeight(1);
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53 circle(p.x, p.y, 5);
54

55 if (i > 0) {
56 PVector pp = points[i-1];
57

58 PVector c = centers[i-1];
59 if (showGuidelines) {
60 stroke(255,0,0);
61 line(p.x, p.y, pp.x, pp.y);
62 strokeWeight(3);
63 point(c.x, c.y);
64 strokeWeight(1);
65 circle(c.x, c.y, 4);
66

67 line(pp.x,pp.y,c.x,c.y);
68 line(p.x,p.y,c.x,c.y);
69 }
70

71 //circle(c.x,c.y,radii[i-1]);
72 stroke(0);
73 strokeWeight(2);
74 if (radii[i-1] >= 0) myArc(c.x,c.y,radii[i-1],PVector.sub(p,c).

heading(),PVector.sub(pp,c).heading(),dirs[i-1]);
75 else line(p.x,p.y,pp.x,pp.y);
76 }
77 }
78

79 stroke(0, 100, 100);
80 strokeWeight(3);
81 point(start.x, start.y);
82 strokeWeight(1);
83 circle(start.x, start.y, 5);
84

85 line(points[0].x, points[0].y, start.x, start.y);
86

87 if (target > -1) {
88 points[target].x = mouseX;
89 points[target].y = mouseY;
90 } else if (target == -1) {
91 start.x = mouseX;
92 start.y = mouseY;
93 }
94

95 if (close) points[N-1] = points[0];
96 }
97

98 void mousePressed() {
99 for (int i = 0; i < N; i++) {

100 PVector p = points[i];
101 if (dist(p.x,p.y,mouseX,mouseY) <= 10) {
102 target = i;
103 return;
104 }
105 }
106 if (dist(start.x,start.y,mouseX,mouseY) <= 10) {
107 target = -1;
108 return;
109 }
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110 target = -2;
111 }
112

113 void mouseReleased() {
114 target = -2;
115 }
116

117 void keyPressed() {
118 if (keyCode == 'D') showGuidelines = !showGuidelines;
119 }
120

121 void calcCenters() {
122 PVector v = PVector.sub(start,points[0]).normalize();
123 for (int i = 0; i < N-1; i++) {
124 PVector dif = PVector.sub(points[i+1],points[i]);
125 float d = dif.mag()*dif.mag()/2;
126 float det = dif.x*v.y - dif.y*v.x;
127

128 if (det != 0) {
129 centers[i].x = d*v.y/det;
130 centers[i].y = -d*v.x/det;
131 dirs[i] = det > 0;
132 radii[i] = centers[i].mag();
133

134 centers[i].add(points[i]);
135 v = PVector.sub(points[i+1],centers[i]).normalize().rotate(HALF_PI*(

dirs[i] ? -1 : 1));
136 } else {
137 centers[i] = dif.copy().mult(0.5).add(points[i]);
138 radii[i] = -1;
139 }
140 }
141 }
142

143 void myArc(float cx, float cy, float r, float a, float b, boolean dir) {
144 float minAngle = dir ? a : b;
145 float maxAngle = dir ? b : a;
146

147 if (minAngle > maxAngle) maxAngle += TWO_PI;
148

149 arc(cx, cy, r, r, minAngle , maxAngle);
150 }
151

152 int sign(float val) {
153 if (val == 0) return 0;
154 if (val > 0) return 1;
155 return -1;
156 }
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