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1 Introduction

John Horton Conway (1937-2020) was a celebrated mathematician, well-known for his work in knot
theory, game theory, number theory or maybe most notably in group theory. He has been described as
the “world’s most charismatic mathematician” [Wikb]. One of his most famous inventions is perhaps the
Game of Life, which he hated for a part of his life and eventually neither loved or hated. [HC14a]

The Game of Life was invented in 1970, before computers were available enough to run it. As soon
as mathematicians and computer scientists got their hands on computers that were powerful enough, the
game was executed, studied and celebrated.

It consists of a grid in the plane in which each cell can be either dead or alive. Then, the state of all
cells is updated in each step according to a few rules. If the neighbours of a cell are the 8 surrounding
cells forming a 3×3 square with this cell as its center, these rules are as follows:

1. A living cell with 1 or fewer living neighbours dies of “underpopulation” in the next step.

2. A living cell with 4 or more living neighbours dies of “overpopulation” in the next step.

3. A dead cell with exactly 3 living neighbours becomes alive in the next step.

In any other case, the cell continues to the next step in the same state.

Figure 1: The four stages of a glider. After a fourth step, the glider returns to the first stage but
translated in a diagonal direction and this cycle repeats. This way, it “glides” across the plane. Living

cells are portrayed in black and dead cells in white. (Edited from [Muz22]. Same for cover.)

The Game of Life is inspired by Stanislaw Ulam’s and von Neumann’s idea of self-replicating au-
tomata, but the rules of the game are also partly drawn from real life: they are an oversimplification of
how organic life reproduces and dies [HC14b]. For this reason, the object of this project is to study the
Game of Life using a Predator-Prey model with the idea that living cells are “preying on” dead cells by
reproducing.

This model was proposed separately by Alfred J. Lotka (1880-1949) in 1920 and Vito Volterra (1860-
1940) in 1926 and is also known as the Lotka-Volterra equations. It is a system of differential equations
that aims to describe how the populations of a “predator” species and a “prey” species interact and
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evolve. This model shows how the periodic fluctuations of these populations arise and behave from a
mathematical standpoint.

The usual examples of this model are those of actual predator and prey species, like foxes and rabbits;
or deer and vegetation. However, as both Volterra and Lotka proposed themselves, the model can be
used to describe many other phenomena, like chemical reactions between two compounds; or even the
contraction and relaxation of muscles.

With the foxes and rabbits example in mind, the Lotka-Volterra equations are

dR
dt

= aR−bRF,

dF
dt

=−cF +dRF (1)

where R and F denote the population or mass of rabbits and foxes respectively; a,b,c,d are positive
parameters; and the differentiation is with respect to time t. In the rabbits’ equation, the R term is
multiplied by a positive coefficient because rabbits are expected to reproduce on their own, while the
F coefficient in the foxes’ equation is negative since these are expected to die of overpopulation. Both
equations share the “interaction” term RF which has negative coefficient for the rabbits since these are
hunted by the foxes; and has positive coefficient for the foxes because these reproduce or grow when
fed by the rabbits. These parameters are not necessarily constant, as they could vary with time or for a
variety of reasons. [notes]

Figure 2: Example plot of numerical solutions to Equations 1 using Euler’s method with a = 0.4,
b = 0.1, c = 0.09 and d = 0.01.

2 The theoretical case

Conway’s Game of Life is well-known for the complexity that arises from its simple rules. It is Turing
complete and could be used to make any kind of logical machine. Interesting patterns are found fre-
quently and the game serves as inspiration for multiple projects and challenges (such as this project),
both serious and recreational.

In particular, multiple structures or patterns are known that behave in a variety of interesting ways:
Some disappear immediately; some are constant or periodic; others serve as “factories” or “guns” for
other moving structures. Because of this, it might seem like there is no general rule for the evolution of
the population of living cells. However, these interesting structures are rare, in the sense that they need
to be designed and the slightest difference could completely change their evolution in a few steps. In
general, a random pattern usually dissolves and spreads into smaller patterns like gliders (Figure 1) or
2×2 cubes that are constant. [Wika]

The hypothesis in this project is that, given some random pattern, the densities of living and dead
cells are expected to behave following an analogue of the Lotka-Volterra equations. Reading the rules of
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the game from the standpoint of the Predator-Prey model, we notice that rule 3 could be read as living
cells preying on dead cells and rule 2 has living cells dying of overpopulation. This sounds like the foxes
in the previous example. However, rule 1 could be read as dead cells preying on living cells, so both
living and dead cells are both prey and predator in this case, unlike in the usual cases. This would mean
that we allow for non-positive values for the parameters in Equation 1.

To study the game’s behaviour, a finite n×n grid is simulated. We write A and D for the number or
density of living (alive) and dead cells respectively. We then have the equations

dA
dt

= aA+bAD

dD
dt

= cD+dAD (2)

for some a,b,c,d ∈ R. Obviously, the game is run in discrete steps of time, so it doesn’t make much
sense to talk about derivatives with respect to time. A and D also take discrete values; are integers if
they represent the number of cells; and are actually bounded in this finite grid. We may talk about the
theoretical values of A and D, which are governed by these equations and are functions of continuous
time; and the real empirical values of A and D, which are obtained experimentally and are discrete. We
would then expect the experimental values to follow the theoretical ones under our hypothesis.

Let’s assume that A and D are the densities of cells. That is, the number of alive or dead cells divided
by n2. Since all cells are either dead or alive, we must have the conditions A,D ∈ [0,1] and A+D = 1.
These constrains simplify our model, since we have

D = 1−A,
dD
dt

=−dA
dt

(3)

Then, we can simplify Equations 2 into a single differential equation and study only A:

dA
dt

= aA+bAD = aA+bA(1−A) = (a+b)A−bA2 (4)

Since a,b ∈ R, we can rewrite a+b =: α and b =: β to have a general quadratic equation

dA
dt

= αA−βA2 (5)

where α,β ∈ R. We have β following a negative sign because we will see that in practice these values
are positive. After another change of variables with r := α and K := α

β
, we can write this equation again

as
dA
dt

= rA
(

1− A
K

)
(6)

This is a well-known equation called the logistic equation, the law of population growth or the
Verhulst-Pearl equation. It was originally proposed by Pierre-François Verhulst (1804-1849) in 1838
and consequently rediscovered by multiple mathematicians, including Lotka in 1925. It models the
growth of an exponentially growing populations with limited resources. r is known as the growth rate
and K is the carrying capacity, which is the maximum population of an organism the environment can
sustain. The analytical solution to this equation is given by

A(t) =
KA0ert

(K −A0)+A0ert =
αA0eαt

(α −βA0)+βA0eαt (7)

where A0 := A(0) is the initial value of the population. We can easily see from Equation 6 that the system
finds its equilibrium at A = 0 and A = K. We will also have A(t) t→∞−→ K if A ̸= 0. These solutions are
called sigmoid functions or logistic functions. This model, along with these functions, is used in a variety
of fields, including machine learning, economics and even linguistics. [Wei] [Wikc]
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Figure 3: Plot of numerical solution A(t) to Equation 5 using Euler’s method with A0 = 50%,
α = 0.005 and β = 0.05. We can see that the solution converges to K = α

β
= 0.1 = 10%.

Looking at Figure 3, we see how the population A(t) monotonically converges to K. At first, the pop-
ulation decreases sharply. The rate at which it decreases slowly lowers and approaches 0 as A approaches
K. D would behave in a similar manner but increasing and converge to 1−K.

This is the case where A0 > K. If A0 < K, A(t) would again converge similarly to K but increasing
(and D would decrease to 1−K). If A0 = K, then both A and D would be constant.

3 The real case

We can populate our grid with an initial density and run the game to study the experimental values. Figure
4 shows the first 100 steps of some runs with different initial densities. The grid is initially populated by
letting each cell be alive with a probability equal to the desired density, so the initial densities in these
runs only approximate the desired ones.

We see in Figure 4 how the experimental densities resemble the theoretical densities from Figure 3.
However, we notice a different behaviour at the start of the runs (Figure 5): Runs with initial densities
around 30% have their density go up with the first step and oscillate with the few following steps, while
runs with high initial densities will have their density drop to low densities in a single step. This is to be
expected as many cells die immediately of overpopulation, but does not match the behaviour of logistic
growth as the density starts increasing after this drop.
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Figure 4: Plot of first 100 steps of 10 different runs of the game with n = 4000. Ranging from 20%
initial density to 65%.

Figure 5: Close up of first 10 steps of the runs with A0 = 25% and A0 = 65% from Figure 4.

Let’s look at one of these runs on its own. We simulate a run Ae(t) with n = 4000 and A0 = 50%; and
look at the steps 50 to 300. We can use Ae(t)−Ae(t −1) as an estimate for dA

dt . Plotting these differences
against Ae(t) like in Figure 6, we expect them to follow a parabola according to equation 5. We could
find the best values for α and β using the least squares method, which gives a quadratic fit. We obtain
the values α = 0.0054802 and β = 0.0978101,
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Figure 6: Plots of Ae(t)−Ae(t −1) against Ae(t) (blue, left); and Ae(t) against t with t from 50 to 300
(blue, right). Fitting a parabola with zero intercept to the left plot (red, left) we obtain the values
α = 0.0054802 and β = 0.0978101 and find a numerical solution A(t) to Equation 5 with Euler’s

method with A(50) = Ae(50) (red, right).

It looks like the run does follow our hypothetical behaviour during these steps. According to these
values, A(t) should slowly converge to K = α

β
≈ 0.0560= 5.60% and not drop under this value. However,

in the following steps, the run drops well under 5.60%. After 2000 steps, the density has dropped below
4% and doesn’t seem to slow down either (Figure 7).

Repeating this process for steps from 300 to 2000 gives values α = 0.0011031 and β = 0.0330395,
which have K ≈ 0.0334= 3.34% Finding a numerical solution like before that matches A(300)=Ae(300)
fits the real densities after 300 steps but doesn’t match for the first 300 steps (Figure 8).

Will the run match this new A(t) after the 2000th step? We can run the game for longer and check.
Taking 8000 more steps, we see in Figure 9 that the same thing as in Figure 7 happens again: The real
density separates from A(t) after t = 2000 and drops below K again.

It looks like Ae(t) does not match our hypothesis in the long run. Trying to find a logistic function
A(t) that behaves like Ae(t) in some interval of time won’t seem to work outside of this interval.

We have been taking constant values α and β . As mentioned earlier, this is not necessarily the case
in many applications of the Predator-Prey model. It is possible that Ae(t) does follow Equation 5 but for
variable values of α and β .

Figure 7: Continuation of Figure 6 up to 2000 steps. A(t) converges to K ≈ 0.0560 (black) while Ae(t)
separates from the A(t) as early as t = 300 and continues to decrease.
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Figure 8: Plot of the A(t) (blue) and Ae(t) (red) with the new values α and β and imposing
A(300) = A3(300). A(t) will converge at K ≈ 0.0334 (black).

Figure 9: Continuation of Figure 8 up to t = 10000. We see the same problem as in Figure 7.

4 Conclusion

We have proposed a Predator-Prey model for Conway’s Game of Life with the justification that the
game’s rules were made to mimic the behaviour of real population growth. Studying the density of living
and dead cells of a game on a finite grid, we realize both species act as both predator and prey; and that
the equations of the Predator-Prey model simplify to that of logistic growth.

Looking at real runs of the Game of Life, we conclude that this model does not fully work, or at least
not for constant coefficients of the equations. However, it does seem to match the behaviour of the game
in a finite period of time.
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Appendix

The following Java code was used to generate the experimental densities:

1 import java.io.FileWriter;
2 import java.io.IOException;
3 import java.util.Random;
4

5 public class Conway {
6

7 public static void main(String [] args) {
8 if (args.length != 7) {
9 System.out.println("Was expecting seven arguments (grid size , time ,

initial , final , step , passes , filename)");
10 System.exit (1);
11 }
12 int n = Integer.parseInt(args [0]);
13

14 int T = Integer.parseInt(args [1]);
15

16 float initial = Float.parseFloat(args [2]);
17 float end = Float.parseFloat(args [3]);
18 float step = Float.parseFloat(args [4]);
19

20 int passes = Integer.parseInt(args [5]);
21

22 for (int i = 1; i <= passes; i++)
23 for (float d = initial; d <= end; d += step) {
24 System.out.println("Starting " + i + "th pass of density " + d*100 + "%"

);
25 new ConwayDoer(n, T, d, args [6] + "-" + ((int) (d*100)) + "-" + i);
26 }
27 }
28

29 }
30

31 class ConwayDoer {
32

33 int n;
34 float tol = 0.0001f;
35

36 boolean [][] states;
37

38 public ConwayDoer(int n, int T, float density , String name) {
39 this.n = n;
40 this.states = new boolean[n][n];
41

42 Random random = new Random ();
43 for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) {
44 states[i][j] = random.nextFloat () < density;
45 }
46

47 try {
48 FileWriter fw = new FileWriter(name + ".csv");
49 fw.write("time , density , difference\n");
50 float prev = 0;
51 float current;
52

53 long start = System.currentTimeMillis ();
54

55 // Steps
56 for (int t = 0; t < T; t++) {
57 current = (( float) sum()) / n / n;
58 fw.write(t + ", " + current + ", " + (current - prev) + "\n");
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59 prev = current;
60

61 if (current < tol) {
62 System.out.println("Hit 0! Finishing early!");
63 fw.close ();
64 return;
65 }
66

67 states = step();
68

69 if (t % 20 == 0) {
70 float time = (System.currentTimeMillis () - start)/1000.0f;
71 System.out.println("progress: " + t + "/" + T + " steps (" + 100.0*t/T

+ "%) - elapsed time: " + time + "s - estimated remaining time: " + (t ==
0 ? "??" : time*(T-t)/t) + "s - current density: " + current *100 + "%");

72 }
73 }
74

75 System.out.println(T + "/" + T + " steps (100%)");
76 System.out.println("Finished!");
77 fw.close ();
78 } catch (IOException e) {
79 e.printStackTrace ();
80 }
81 }
82

83 boolean [][] step() {
84 boolean [][] next = new boolean[n][n];
85 for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) {
86 int neighbours = neighbours(i, j);
87 next[i][j] = neighbours == 3 || (states[i][j] && neighbours == 2);
88 }
89

90 return next;
91 }
92

93 boolean getState(int i, int j) {
94 i %= n;
95 j %= n;
96 if (i < 0) i += n;
97 if (j < 0) j += n;
98 return states[i][j];
99 }

100

101 int neighbours(int i, int j) {
102 int neighbours = 0;
103 for (int a = -1; a <= 1; a++) for (int b = -1; b <= 1; b++) {
104 if (a != 0 || b != 0) neighbours += getState(i+a, j+b) ? 1 : 0;
105 }
106 return neighbours;
107 }
108

109 int sum() {
110 int m = 0;
111 for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) {
112 m += states[i][j] ? 1 : 0;
113 }
114 return m;
115 }
116 }
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